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Introduction [1]:  The theory of Timoshenko beam was developed early in the twentieth century 

by the Ukrainian-born scientist Stephan Timoshenko.  Unlike the Euler-Bernoulli beam, the 

Timoshenko beam model accounts for shear deformation and rotational inertia effects.  

Therefore, the Timoshenko beam can model thick (short) beams and sandwich composite beams.  

The stiffness of the Timoshenko beam is lower than the Euler-Bernoulli beam, which results in 

larger deflections under static loading and buckling.  The limiting case of infinite shear modulus 

will neglect the rotational inertia effects, and therefore will converge to the ordinary Euler-

Bernoulli beam. 

 

Dimension Analysis:  The variables in the problem are 𝑤,𝜃, 𝑞,𝐸, 𝐼, 𝐿,𝐺,𝐴 and there are two 

independent variables.  Therefore, I expect that the solution finally be a function in the following 

form: 

𝑤/𝐿 = 𝑓1 �
𝐼
𝐿4

,
𝐴
𝐿2

,
𝐸
𝐺

,
𝑞
𝐸𝐿
�, (1) 

𝜃 = 𝑓2 �
𝐼
𝐿4

,
𝐴
𝐿2

,
𝐸
𝐺

,
𝑞
𝐸𝐿
�. 

(2) 

 

Theoretical Formulation [2]:  In the Timoshenko theory, the displacement field is assumed to 

be 

𝑢𝑥(𝑥,𝑦) = −𝑦 𝜃(𝑥), 𝑢𝑦(𝑥,𝑦) = 𝑤(𝑥). (3) 

Therefore, the strain components are 
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𝜀𝑥𝑥 =
𝜕𝑢𝑥
𝜕𝑥

= −𝑦 𝜃 ′(𝑥), 𝜀𝑦𝑦 = 0,       𝛾𝑥𝑦 = −𝜃(𝑥) + 𝑤 ′(𝑥), (4) 

and the stress components are (assuming plane stress): 

𝜎𝑥𝑥 = −𝐸𝑦𝜃 ′(𝑥), 𝜎𝑦𝑦 = −𝐸 
𝜈

1 − 𝜈2
 𝑦 𝜃 ′(𝑥),      𝜎𝑥𝑦 = 𝜅𝐺 𝛾𝑥𝑦 = 𝜅𝐺 �𝑤 ′(𝑥) − 𝜃(𝑥)�. 

                                                                                                                                           (5) 

The potential energy of the beam (𝜋) is 

𝜋 =
1
2
�𝜎𝑥𝑥𝜀𝑥𝑥𝑑𝑉 +

1
2
�𝜎𝑥𝑦𝜀𝑥𝑦𝑑𝑉 − �𝑞(𝑥)𝑤(𝑥)𝑑𝑥 (6) 

Substituting the expressions of strains and stresses into Eq. (6) yields 

𝜋 = 1
2 ∫ 𝐸𝜀𝑥𝑥

2𝑑𝑉 + 1
2 ∫ 𝜅𝐺𝛾𝑥𝑦

2𝑑𝑉 − ∫𝑞(𝑥)𝑤(𝑥)𝑑𝑥 =

1
2 ∫ ∫𝐸𝑦

2(𝜃′(𝑥))2𝑑𝐴𝑑𝑥 + 1
2 ∫ ∫ 𝜅𝐺(−𝜃(𝑥) + 𝑤′(𝑥))2𝑑𝐴𝑑𝑥 − ∫𝑞(𝑥)𝑤(𝑥)𝑑𝑥. 

⇒ 𝜋 =
1
2
𝐸𝐼 � (𝜃′(𝑥))2𝑑𝑥

𝐿

0
+

1
2
𝜅𝐺𝐴� (−𝜃(𝑥) + 𝑤′(𝑥))2𝑑𝑥

𝐿

0
− � 𝑞(𝑥)𝑤(𝑥)𝑑𝑥

𝐿

0
 (7) 

. 

And therefore, the variation in the potential energy is 

𝛿𝜋 = 𝐸𝐼 �
𝑑𝜃(𝑥)
𝑑𝑥

𝑑𝛿𝜃
𝑑𝑥

𝑑𝑥
𝐿

0
+ 𝜅𝐺𝐴� �𝜃(𝑥) −

𝑑𝑤(𝑥)
𝑑𝑥

� �𝛿𝜃 −
𝑑𝛿𝑤
𝑑𝑥

�𝑑𝑥
𝐿

0
− � 𝑞(𝑥)𝛿𝑤𝑑𝑥

𝐿

0

= 0 

(8) 
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Next the FEA interpolation for 𝑤(𝑥), 𝜃(𝑥), 𝛿𝑤, and 𝛿𝜃 should be introduced [3]. 

𝑤(𝑥) = �𝑁𝑎

𝑎

𝑤𝑎, 𝜃(𝑥) = �𝑁𝑎

𝑎

𝜃𝑎,

𝛿𝑤 = �𝑁𝑏

𝑏

𝛿𝑤𝑏,    𝛿𝜃 = �𝑁𝑏

𝑏

𝛿𝜃𝑏 
(9) 

Plugging the above interpolations into Eq. (8) yields: 

𝛿𝜋 = 𝐸𝐼𝜃𝑎𝛿𝜃𝑏 �
𝑑𝑁𝑎

𝑑𝑥
𝑑𝑁𝑏

𝑑𝑥
𝑑𝑥

𝐿

0
+ 𝜅𝐺𝐴� �𝑁𝑎𝜃𝑎 −

𝑑𝑁𝑎

𝑑𝑥
𝑤𝑎� �𝑁𝑏𝛿𝜃𝑏 −

𝑑𝑁𝑏

𝑑𝑥
𝛿𝑤𝑏�𝑑𝑥

𝐿

0

− 𝛿𝑤𝑏 � 𝑞(𝑥)𝑁𝑏𝑑𝑥
𝐿

0
= 0 

(10) 

which should hold for any 𝛿𝑤𝑏 and 𝛿𝜃𝑏, and therefore 

�𝜅𝐺𝐴�
𝑑𝑁𝑎

𝑑𝑥
𝑑𝑁𝑏

𝑑𝑥
𝑑𝑥

𝐿

0
�𝑤𝑎 + �−𝜅𝐺𝐴� 𝑁𝑎 𝑑𝑁

𝑏

𝑑𝑥
𝑑𝑥

𝐿

0
� 𝜃𝑎 = � 𝑞(𝑥)𝑁𝑏𝑑𝑥

𝐿

0
. (11a) 
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𝑁𝑏𝑑𝑥

𝐿

0
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𝐿

0
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𝑑𝑁𝑏

𝑑𝑥
𝑑𝑥

𝐿

0
� 𝜃𝑎 = 0. (11b) 

 

The above integrals should first be calculated using Gaussian quadrature scheme, and then 

assembling over all the elements yields 

𝑲𝒖 = 𝑭, (12) 

where 𝒖 = {𝑤1 𝑤2 𝑤3 … 𝑤𝑁 𝜃1 𝜃2 … 𝜃𝑁}T. 

Finally 𝒖 is computed as 𝒖 = 𝑲−𝟏𝑭 [3]. 

Eqs. (11) has been implemented in a Matlab code.  The code is self-explanatory, and is given in 

the Appendix.  The next section is devoted to the results. 



4 
 

Results: 

The Timoshenko beam subjected to uniform load distribution with different boundary conditions 

has been already solved analytically. The table below summarized the analytical results [4]; in 

this table 𝜈 is the displacement, and the subscripts E and T correspond to Euler-Bernouli beam 

and Timoshenko beam, respectively. 

 

 

 

 

 

 

 

 

 

 

 

For 𝑞 = −1000, 𝐿 = 10, 𝑏 = 1,ℎ = 2,𝐸 = 5 ∗ 106, 𝜈 = 0.3, 𝜅 = 5/6, the simply-supported 

Timoshenko beam is solved with FEA and analytically.  The below table compare the results: 
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Table 2: Displacements of the simply supported Timoshenko beam 

Node No Position Exact Results FEA Results 
1 0 0.0000 0 
2 1 -0.0137 -0.0134 
3 2 -0.0257 -0.0253 
4 3 -0.0350 -0.0345 
5 4 -0.0409 -0.0403 
6 5 -0.0430 -0.0423 
7 6 -0.0409 -0.0403 
8 7 -0.0350 -0.0345 
9 8 -0.0257 -0.0253 

10 9 -0.0137 -0.0134 
11 10 0.0000 0 

 

The next example is the cantilever beam with the same loading, material properties, and 

geometries as the previous example. One hundred elements have been used for this example.  

The deformed shape of the beam is shown below: 

 

The maximum displacement at the end of the beam is 0.3906.  For the limiting case of 𝜅 → ∞, 

the special case of Euler-Bernoulli beam is obtained.  In this example, the maximum 
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Fig 1: Displacements of the Cantilever Beam 
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displacement of the Euler-Bernoulli beam is calculated as 0.3750.  And so, the shear deformation 

is around 4% of the total displacement in the Timoshenko beam. 

In the FEA code, first two Gaussian points were used for all integrations.  However, the 

convergence was relatively slow, and therefore, I finally ended up with two integration points for 

the bending part of the stiffness matrix and one integration point for the shear part of the stiffness 

matrix. 

 

References: 

[1]  http://en.wikipedia.org/wiki/Timoshenko_beam_theory 

[2] Theory of Elasticity, Stephen Timoshenko 

[3] Class lecture notes 

[4] S. Cutrona, S. Di Lorenzo, A. Pirrotta, Timoshenko vs Euler-Bernoulli beam: fractional 

visco-elastic behavior. 
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Appendix: The Matlab code used for the above calculations is given below: 

function Bending_of_Timoshenko_Beam_V3 

%................................................................ 
  
% MATLAB Code for FE Analysis of Timoshenko Beam under Bending 
  
clc; 
clear all 
  
% Material properties:  E (modulus of elasticity), nu (Possion's ratio), G 

% (shear modulus), kappa 

E = 5000000; nu = 0.3; G = E/(2*(1+nu)); kappa = 1000000; 
  
% Geometric properties:  L (length of beam), h (thickness of beam) 

% I: second moments of area 

L = 10; h = 2; 
I = h^3/12; 
EI = E*I; 
  
%Distributed load 

q = -1000; 
  
% Mesh 

nelm = 100; 
ncoords=linspace(0,L,nelm+1); % node coordinates 
  
% Connectivity is the list of nodes for each element 

for i=1:size(ncoords,2)-1 

    connect(i,1)=i; 

    connect(i,2)=i+1; 

end 

nnodes = nelm + 1; % nnodes is the total number of nodes 

TotalDofs=2*nnodes; % TotalDofs: global number of degrees of freedom 
  
% Computation of the system stiffness and residual matrices 

[stiffness,resid]=... 
    GlobalStiffnessAndResidual(TotalDofs,nelm,connect,nnodes,q,EI,kappa,h,G,L); 
  
% boundary conditions (simply-supported at both bords) 

%fixedNodeW =[1 ; nnodes]; 

%fixedNodeTX=[]; 
% boundary conditions (clamped at both bords) 

%fixedNodeW =[1 ; nnodes]; 

%fixedNodeTX=[1 ; nnodes]; 

% boundary conditions (cantilever) 

fixedNodeW =[1]; 
fixedNodeTX=[1]; 
prescribedDof=[fixedNodeW; fixedNodeTX+nnodes]; 
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% solution 

%displacements=solution(TotalDofs,prescribedDof,stiffness,resid); 
  
activeDof=setdiff((1:TotalDofs)', (prescribedDof)); 
  
U=stiffness(activeDof,activeDof)\resid(activeDof); 

displacements=zeros(TotalDofs,1); 

displacements(activeDof)=U; 
  
% displacements 

disp('Displacements and Rotations:') 

%displacements=displacements1; 

jj=1:TotalDofs; format 

[jj' displacements] 
  
end 

% 

%================= STIFFNESS MATRIX AND RESIDUAL VECTOR 
================================ 

% 

% This function computes the stiffness matrix and residual vector for 

% Timoshenko beam 

% 

function [stiffness,resid]=... 
    GlobalStiffnessAndResidual(TotalDofs,nelm,connect,nnodes,q,EI,kappa,h,G,L) 
  
stiffness=zeros(TotalDofs); 
resid=zeros(TotalDofs,1); 
  
% Computing bending contribution for the stiffness matrix 
  
% Integration points and wieghts for bending 

integrationpoints=[-0.577350269189626,0.577350269189626]; 
w=ones(1,2); 
% 

%  Loop over elements 

% 

for e=1:nelm 

    indice=connect(e,:); 
    elmdof=[ indice indice+nnodes]; 

    ndof=length(indice); 

    dett=L/(2*nelm);dxidx=1/dett; 

    % 

    %  Loop over integration points 

    % 

    for intpt=1:size(w,2); 

        % 

        %  Compute shape functions && derivatives wrt local coords 

        % 

        xi=integrationpoints(intpt); 
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        N = shapefunctions(xi); 

        dNdxi = shapefunctionderivs(xi); 

        % 

        %  Convert shape function derivatives:derivatives wrt global coords 

        % 

        dNdx=dNdxi*dxidx; 
        % 

        % Compute B matrix 

        % 

        B=zeros(2,2*ndof); 

        B(1,ndof+1:2*ndof)  = dNdx(:); 

        % 

        % Compute K matrix and residual vector 

        % 

        stiffness(elmdof,elmdof) = stiffness(elmdof,elmdof) + transpose(B)*B*w(intpt)*dett*EI;             
        resid(indice) = resid(indice) + N*q*dett*w(intpt); 

    end 

end 

% 

%  Shear contribution for stiffness matrix 

% 

%  Integration points and wieghts for shear 

integrationpoints=[0]; 
w=[2]; 
% 

%  Loop over elements 

% 

for e=1:nelm 

    indice=connect(e,:); 
    elmdof=[ indice indice+nnodes]; 

    ndof=length(indice); 

    % 

    %  Loop over the integration points 

    % 

    for intpt=1:size(w,2) ; 

        % 

        %     Compute shape functions && derivatives wrt local coords 

        % 

        xi=integrationpoints(intpt); 

        N = shapefunctions(xi); 

        dNdxi = shapefunctionderivs(xi); 

        % 

        %     Convert shape function derivatives:derivatives wrt global coords 

        % 

        dNdx=dNdxi*dxidx; 
        % 

        % Compute B matrix 

        % 
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        B=zeros(2,2*ndof); 

        B(2,1:ndof) = dNdx(:); 

        B(2,ndof+1:2*ndof)  =- N; 
        % 

        % Compute K matrix 

        % 

        stiffness(elmdof,elmdof) = stiffness(elmdof,elmdof) + kappa*h*G*transpose(B)*B*w(intpt)*dett;            
    end 
     
end 
  
end 

% 

%================= SHAPE FUNCTIONS ================================== 

% 

%        Calculates shape functions for various element types 

% 

function N = shapefunctions(xi) 
  
N = zeros(2,1); 
% 

%  1D elements 

% 

N(1) = 0.5*(1.-xi(1)); 
N(2) = 0.5*(1.+xi(1)); 

end 

% 

%================= SHAPE FUNCTION DERIVATIVES ====================== 

% 

function dNdxi = shapefunctionderivs(xi) 
  
dNdxi = zeros(1,2); 
% 

% 1D elements 

% 

dNdxi(1) = -0.5; 
dNdxi(2) = +0.5; 
end 

% 

% 

 




